Saturday

8:00-9:00 Breakfast

9:00-10:00 Featured Talk
 Dick Hudson Ecology & Evolutionary Biology, UCI
 Fun with coalescents

10:15-12:15 First Session
 Jonathan B. Geller Hopkins Marine Station, Stanford
 Within and between species variation in mitochondrial rDNA in Mussels
 Robert Gibson Biology, UCLA
 What lks have told us about sexual selection
 Kristina Jones Botany, UC Davis
 Fertility selection in plants: a model with non-random mating
 Michael Fugate Dept. Biology, UCR
 Genetic relationship between populations of 4 species of fairy shrimp
 William Klitz Integrative Biology, UCB
 Unraveling of complex genetic traits
 Gerrit Platenkamp Botany & Plant Sciences, UCR
 Quantitative genetics of seed characters in baby blue eyes

12:30-1:30 Lunch

2:00-3:20 Second Session
 Trevor Price Biology, UCSD
 Evolution of a color pattern
 Lily Lion Dept. Biology, UCSD
 Evolution of song in Phylloscopus warblers
 Adam Richman Dept. Biology, U. Oregon
 Evolution of ecological segregation in the Old World leaf warblers
 Austin Burt Biology, UCSC
 The selective advantage of mate choice

3:20- 4:00 Coffee break

4:00-6:00 Third Session
 Sean Rice Integrative Biology, UCB
 Evolutionary dynamics with two levels of selection
 Enrique F. Lessa MVZ, UCB
 Surveying DNA sequence variation using gradient gel electrophoresis
 Manyuan Long Center for Population Biology, UCD
 Molecular evolution of ADH pseudogene in D. yakuba and teissieri
 Bradley Shaffer Zoology, UCD
 The genetic basis of convergent evolution in amphibian metamorphosis
 Joanna Mountain Genetics, Stanford
 Nuclear DNA polymorphisms and human evolution
 John Wakeley Integrative Biology, UCB
 Substitution rate variation in non-recombining DNA sequences

6:30 Dinner

8:00-8:40 Forth Session
 Scott Edwards Biochemistry & MVZ, UCB
 mtDNA of babblers: coalescence across Pleistocene water barriers
 Gordon Fox Ecology & Evolution, Arizona
 Inferences in multilocus genetics: Wright meets the Hamiltonian
Sunday

8:00-9:00 Breakfast

9:00-10:00 Featured Talk
 Brian Charlesworth Ecology and Evolution, Chicago
 Fun with Sex

10:15-12:15 Fifth Session
 Jaume Bertranpiedt Genetics, Stanford
 PCA of gene frequencies and the history of human populations
 Kevin Laland Integrative Biology, UCB
 Sexual selection with a culturally transmitted mating preference
 Robert Podolsky Botany & Plant Sciences, UCR
 Patterns of variation in two populations of Clarkia dudleyana
 Laura Galloway Botany, UCD
 Environment-dependent heritability of reproductive isolation in Mimulus
 Valeria Souza Ecology & Evolutionary Biology, UCI
 Paradoxical fitness effects due to recombination in bacteria
 Luis Eguiarte Botany & Plant Sciences, UCR
 Population genetics of tropical plants

12:30-1:30 Lunch

2:00-3:40 Sixth Session
 Michael Travisano Zoology, Michigan State
 Adaptation and divergence during long-term evolution
 Fred Janzen Ecology & Evolution, Chicago
 Natural selection on body size in hatchling snapping turtles
 Maria Orive Integrative Biology, UCB
 Effective population size in clonal organisms
 Edmund D. Brodie III MVZ, UCB
 Correlational selection in garter snakes and its genetic implications
 Philippe Jarne
 Population structure & mating systems in freshwater hermaphroditic snails

People who could talk, but who claimed they didn't care one way or the other:
 Alan Rogers Anthropology, Univ. of Utah
 Population growth makes waves in distribution of pairwise differences
 Gord Hines Math & Stat, Univ. of Guelph
 Sex as an investment strategy
 H. Allen Orr Center for Population Biology, UCD
 A genetic model of speciation: hybrid sterility in Drosophila
Participants

Robin Bush Dept. Ecology, UC Irvine
Briette de Saint Phalle Biology, UC Santa Cruz
Steven Frank Ecology & Evolutionary Biology, UC Irvine
Jonathan B. Geller Hopkins Marine Station, Stanford
Robert Gibson Biology, UCLA
Monty Slatkin Integrative Biology, UC Berkeley
Lianne Voelm Genetics, UC Berkeley
Mark Grote Integrative Biology, UC Berkeley
Trevor Price Biology, UC San Diego
Karen Marchetti Zoology, UC Davis
Hugh Salamon Integrative Biology
Kristina Jones Botany, UC Davis
Peter Hecht Molecular and Cell Biology, UC Berkeley
Michael Fugate Dept. Biology, UC Riverside
Lilly Lion Dept. Biology, UCSD
Mark Tinkle Dept. of Biology, UC San Diego
Magnus Nordborg Dept. Biological Sciences, Stanford
William Kitz Integrative Biology, UC Berkeley
Glenys Thomson Integrative Biology
Gerard Platekamp Botany & Plant Sciences, UC Riverside
Bill Rice Biology, UC Santa Cruz
Adam Richman Dept. Biology, U. Oregon
Ana Maria Valdes Integrative Biology, UC Berkeley
Austin Burt Biology, UCSC
Vassiliki Koufopanou Biology, UCSC
Damian Gessler Biology, UCSD
Sean Rice Integrative Biology, UCB
Enrique P. Lessa MZ, UCB
Chaoqiang Lai Center for Population Biology, UCD
H. Allen Orr Center for Population Biology, UCD
Charles H. Langley Center for Population Biology
Manyuan Long Center for Population Biology, UCD
Gord Hines Math & Stat, Univ. of Guelph
David Pollock Biological Sciences, Stanford
Peter Godfrey-Smith Philosoph, Stanford
Jaume Bertranpetit Genetics, Stanford
Jonathan Eisen Biological Sciences, Stanford
Yoko Satta Population Genetics, National Institute of Japan
Robert Podolsky Botany & Plant Sciences, UC Riverside
Eric Nagy Botany, UCD
Laura Galloway Botany, UCD
Valeria Souza Ecology & Evolutionary Biology, UCI
Luis Eguiarte Botany & Plant Sciences, UCR
Fred Janzen Ecology & Evolution, Chicago
Maria Orive Integrative Biology, UCB
Edmund D. Brodie III MZ, UCB
Philip Spleth Plant Pathology, UCB
Scott Edwards Biochemistry & MZ, UCB
Alan Rogers Anthropology, Univ. of Utah
Gordon Fox Ecology & Evolution, Arizona
Joseph Lorenz Anthropology, UCD
Jamie King Zoology, UCD
Jennifer MacDonald Center for Population Biology, UCD
Tim Frout Genetics, UCD
Bradley Shaffer Zoology, UCD
Joanna Mountain Genetics, Stanford
Pam Wiener Biological Sciences, Stanford
Sally Otto Biology, Stanford
David Goldstein Biology, Stanford
Aviv Bergman Biology, Stanford
John Wakeley Integrative Biology, UCB
Michael Travisano Zoology, Michigan State
Dick Hudson Ecology & Evolutionary Biology, UCI
John Braverman Center for Population Biology, UCD
David Neale Institute of Forest Genetics, USFS
Kim Marshall Institute of Forest Genetics, USFS
Brian Charlesworth Ecology and Evolution, Chicago
Deborah Charlesworth Ecology and Evolution, Chicago
Jane Charlesworth Center for Lizard Biology, Chicago
John Gillespie Center for Population Biology, UCD
David Mirman Genetics, UCD
Paul E. Turner Zoology, Michigan State
Anne Gerber
Kevin Laland Integrative Biology, UCB
Eric Rowe Integrative Biology, UCB
Robin Gordon Sacramento Country Day School
Deborah Rogers Forestry & Resource Management, UCB
Philippe Jarne Ecology & Evolution, Chicago
Dick Hudson: Coalescence

Gene Genealogy

Wright-Fisher Neutral Model

- Choose F_2 randomly
- Add mutation

when did these two have common ancestor

- $p(\text{same parent}) = \frac{1}{2N}$
- $p(\text{different}) = 1 - \frac{1}{2N}$
- $p(\text{recent ancestor at } t)$

mutation: constant per generation

- Difference between these two sequences should be

 $E(2U) = \frac{1}{2} \mu N$ (from above)

- $\frac{1}{2} \mu N$

- $p(\text{same}) = \frac{\frac{1}{2} \mu N}{\frac{1}{2} \mu N + 2U}$

- $p(\text{different}) = \left(\frac{2U}{\frac{1}{2} \mu N + 2U}\right)^j \left(\frac{1}{2} \mu N \right)^j \left(\frac{2U}{\frac{1}{2} \mu N + 2U}\right)^{-j}$
Geographic Structure

\(p(A \text{ came from other pop}) = 2m \)

\(E(T \text{ common ancestor}) = 4N \) (mean)

© McDonald & Kreitman

<table>
<thead>
<tr>
<th>fixed</th>
<th>synonymous</th>
<th>non-synonymous</th>
</tr>
</thead>
<tbody>
<tr>
<td>polym.</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

all mutations of
1. will get fixed

all here
poly...
B. Charlesworth: Evolution of Sex Chromosomes

Hermaphrodites \(\rightarrow \) separate sexes

\[\phi + \phi \rightarrow \phi + \phi \]

\[\phi + \sigma \rightarrow \phi + \sigma \]

\[\phi \rightarrow \sigma \quad \text{ANDRODIOECY} \]

many examples of GYNO Dioecy but not ANDRO Dioecy

- must also include cytoplasmic factors because those factors are inherited through \(\phi \) and \(\sigma \) fertility is less "important"

- inbreeding avoidance may help explain advantages of GYNO Dioecy

\[\text{in plants that are self-compatible} \]

\[M, F \]

\[M^{A-} + M^{A+} \rightarrow F^{a+} + M^{A-} \rightarrow M^{a+} F^{a+} \]

\[F^{a+} \rightarrow F^{a-} \]

\[M^{a-} \rightarrow M^{a+} \]

\[M^{a+} F^{a+} \rightarrow M^{a+} F^{a-} \]

male sterility due to recessive mutation

- male \(\sigma \) sterile due to recessive mutation

female \(\phi \) sterile due to "male sterility locus"

\[M^{-} M^{-} \]

\[\phi \text{ sterility locus} \]

\[\begin{array}{c|c|c}
\phi & \phi & F \\
F & F & M \\
\end{array} \]

Gene for \(\phi \) or \(\sigma \) sterility must be linked for \(\phi \) invasion will occur
How does Y evolve to become degenerate?

Muller's ratchet

Y accumulates damage so may "want" to increase dosage of X relative to Y

Bill Rice's ratchet

Hitchhiking of deleterious mutations on Y chromosomes may lead to dosage compensation

Transposons on Y chromosomes

[Drawings of genetic elements and processes]

[Diagrams of genetic processes and relationships]
Lily Liu: Evolution of song in Phylloscopus warblers

Song can only be related to history in very closely related organisms.

Song may be constrained by environment.

* Trevor Price?

- Origin of new features in evolution
- Problem: selection obscures origin
- No theory of development

<table>
<thead>
<tr>
<th>Species</th>
<th>Patches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wing</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>+</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
</tr>
<tr>
<td>D</td>
<td>+</td>
</tr>
</tbody>
</table>

Lack of melanin is due to premature melanocyte death.

Development Model:
- "Activator" of pattern autocatalyzes itself
- Also starts "repressor"
1. Jonathan Geller: Mitochondrial RNA variation in muskrat
 Mytilus edulis complex
galloprovincialis
transulcis

How does
ballast work?

2. Kristina Jones: selection and plant population evolution
 Evolution of flowers.

 adults
 pollination
 --- > fertilization
 offspring
 pollen receipt
 --- > seed maturation

must incorporate
1) non-random mating

Assort. mating acts
like disruptive selection

3. Michael Pugate: UCR
 Genetic relatedness of 4 species of fairy shrimp
 population:
 Est. rest for 2 3 4 5 6 7 8 9

 Est

4. William Klitz: unraveling of complex genetic traits
 Genetic IDDM
 Transmission ratio analysis
Mitochondrial variance within a population as indication of population size.

\[\text{freq.} \]

\[i = \text{pairwise distance} \]

\[\text{predicted from population of constant size} \]

\[\Theta_0 = 2 \mu N_0 \]
\[\Theta = 2 \mu N_1 \]
\[\Theta = 2 \mu t \]

No = original population size
\[u = \text{sum of mutations per generation} \]

Can use to predict \(t \)
Scan Rice

1. Colony of cells w/ asexual reproduction
2. Individual selection
3. Groups make baby groups at different time scale

How do groups make baby groups?

Scott Edwards mtDNA in bubbles
Mangum Long
A04: Pseudo-pseudogenes in Drosophila

Evolution of metamorphosis in salamanders
Joanna Mountain

1. Directed evolution with two alleles
2. Add two lac genes to E.coli
do Caussin's test
analyze types of mutation
3. Introduce adjacent mutations to see how they change
S. Otto Evol. implications of Ploidy Level

- see Valero et al in TREE
 - haploids have less DNA to copy; can do it faster
 - diploids can have heterozygote advantage
 - diploids have copy to aid in repair
- if two copies of every gene deleterious recessive mutations can be masked

WHAT ABOUT GENE DUPLICATIONS IN HAPLOIDS?

working hypothesis:

3 2

market due to duplications in haploids
Jaume Bertranpetit: Origin of the Bearded

Kevin Laland: Cultural Influences on Sexual Selection

Robert Flaherty

Laura Salkowsky

Reproductive allocation

Q: What does that mean in terms of chloroplasts?

Q

Test allocation

Q

If source-sink models hold for allocation then chloroplasts may be very important

Michael Travisano: Adaptation & Divergence during Long-term Evolution

What is the Arabidopsis mutation?

Valerie Seara